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Commutator equations of type [t, x] = u involving hermitian and antihermitian operators are 
studied with regard to possible use in MO methods. Their advantage for adoption in semiempirical 
methods is demonstrated in truncated diatomic expansions involving integrals over [r, p] = - 1 and 
[r, h] = p. Approximate and exact formulas for both slope of overlap and effective core Hamiltonian 
parameters are compared. A generalization to polyatomics is suggested. 

Kommutatorgleichungen vom Typ [t, x] = u mit hermitischen und antihermitischen Operatoren 
werden im Hinblick auf m6gliche Anwendung in MO Methoden studiert. Der Vorteil ihrer Verwendung 
in semiempirischen Methoden wird anhand von abgebrochenen zweiatomigen Entwicklungen fiir 
Integrale tiber [r, p] = -  1 und [r, h] = p demonstriert. Approximative und exakte Formeln for 
sowohl Uberlappungsgradient als auch Parameter des effektiven Core-Hamiltonoperators werden 
verglichen. Eine Verallgemeinerung zu polyatomaren Molektilen wird angeregt. 

Etude d'6quations op6ratorielles ~ commutateurs: [t, x] =u portant sur des op6rateurs hermi- 
tiques ou anti hermitiques, en vue de leur utilisation possible dans les m6thodes d'orbitales mol6- 
culaires. D6monstration de leur avantage pour les m6thodes semi-empiriques darts les d~veloppements 
diatomiques tranqu6s comportant des int6grales sur [r, p] = -  1 et [r, hi = p. Comparaison de 
formules approch6es et exactes pour les param6tres de pente du recouvrement et d'hamiltonien de 
coeur effectif. Suggestion d'une g6n6ralisation aux mol6cules polyatomiques. 

1. Introduction 

In the last few years, there has been considerable interest in semiempirical  
methods  of s t ructure and  bond ing  whose formalisms have some theoretical 
just if icat ion [1, 2 I. The at tractiveness comes from the fact that  such a method  
should be more  reliable in its predictiveness. Sometimes this has been misunder-  
stood to mean  that  such a method  can and  should produce better results than an  
empirical  method.  Since this frequently is no t  the case, there is an inc l ina t ion  to 
give up searching for theoretically satisfactory improvements .  However,  one 
should bear  in m i n d  that  results of a theoretically sound method  in any form of 
approx imat ion  should resemble results of its unapprox ima ted  form, no t  an empiri-  
cal set of data. Thus  approx imat ions  to a SCF method  can be compared  in a 
meaningful  way only to SCF theory itself. 

Let us call a method  wi thout  empirical  ingredients  an approximate  molecular  
orbital  method.  To get away from empirical  adjustment ,  one has to investigate 
the consequences  of approx imat ions  in the under ly ing  theory. In  particular,  
the search for simple formulas  for the integrals retained in the approximate  
method,  called parameters  in semiempirical  methods,  seems to be promising.  

* Presented in part at the van Vleck-Symposium on Atomic, Molecular and Solid State Theory 
and Quantum Biology, Sanibel Island, Florida, January 18-23, 1971. 
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The two kinds of parameters which are most interesting are e and/3 parameters. 
Theoretically, they are defined as integrals over an effective core Hamiltonian h 
and a set of atomic orbitals. In the following, we denote parameters with a bar: 
~.  = ()~a [ h l z . ) ,  ffab = ( zo lh l zb )  for non-orthogonal orbitals X and without a bar: 
e, = (2 , lh l2 , ) ,  fl~b = (2~[hl2b) for orthogonalized atomic orbitals 2. 

The most recent formulas for fl parameters are based on the use of the com- 
mutator relation [r, hI = p between position vector r, linear momentum p (here 
defined as antihermitian by the inclusion of the imaginary unit 0, and effective 
Hamiltonian h of a single electron. Various formulas have been proposed for fl's 
over orthogonalized orbitals and ff's over non-orthogonal orbitals in diatomic 
[3-6]  and polyatomic molecules [7]. 

In this paper we present a study of general commutator  relations. In Sect. 2 
we derive relations between integrals of operators in a diatomic first-order 
expansion over non-orthogonal and symmetrically orthogonalized orbitals [8]. 
In Sect. 3 we apply these formulas to the slope of overlap dS/dR (R is the inter- 
nuclear distance). Three approximations are compared to the exact calculation 
of this quantity for 2s-, 2pa-, and 2prc-orbitals. Sect. 4 gives the same comparison 
for flparameters for varying effective charges Z. Sect. 5 discusses values of Linder- 
berg's form of fl in comparison to an exact calculation of fl, also for varying 
effective charges Z. 

2. Approximate Formulas from General Commutator Equations 

Let us start with a general operator equation of the form 

[t, x] = u (2.1) 

where t is a hermitian operator and x and u are hermitian or anti-hermitian single- 
electron operators. The equivalent of this equation in integral form is an expansion 
of an element uu~ = (l~lulv) as follows [9] 

uu~ = ~ (tua xa~ - xua t,~) (2.2) 
2 

where #, v are arbitrary (orthogonal or non-orthogonal) orbitals and 2 is taken 
over a complete orthogonal set. Elements tua, xz~, etc., are integrals defined in the 
same way as uuv. 

An expansion in a non-orthogonal set Z takes the form 

u,~ = ~ [tux(F2)x, zxx,~-  xuz(F2)x, xtx,,] (2.3) 
Z, X" 

where F is a transformation matrix from the non-orthogonal to an orthogonal 
set. For  symmetrically orthogonalized orbitals in molecules [81, F z =  S-1 holds, 
where S is the overlap matrix. 

In a truncated expansion, only the few main terms are used. This is particularly 
useful if matrix elements of two of the operators are easy to calculate so that an 
element of the third operator can essentially be represented as a combination of 
a few terms of elements of the first two operators. For  example, we can approxi- 
mately represent an element of operator x as a combination of other elements 
of x, elements of operator t, and a single element of operator u. 
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Let us consider matrix elements over non-orthogonal atomic orbitals in 
diatomics. They will be denoted by a bar. A non-diagonal element (Z.lul)~b) 
over orbital )G on atom A and Zb on atom B will be written ~.b. 

The simplest type of approximation for g.b is the one suggested by Rueden- 
berg [10] where only a single orbital is used in the expansion (2.2). One assumes 
that the expansion is equally valid if either orbital Z. or Zb is used. ~ab is represented 
as the average of the single orbital expansions over Z. and Zb. Non-diagonal 
elements g.b are then approximately obtained as 

2 
- Lb ( 2 . . - - 2 b b ) + -  - -~b" (A) 

- t \ .  - t ; , ,  t . a - -  

The next improved approximation uses two orbitals in the expansion (2.2) of 
~.b- If we take orthogonalized orbitals 2. and 2 b from a symmetrical orthogonaliza- 
tion [83 of Z. and )~b, we obtain 

1 {~b--�89 (g. . --gbb)+ 1--S"2 U.b (B) 
x.b = sob (2 . .  +  bb) + 7~ -- t\b 

with S.b = (Z .  ]Zb). 
If we consider approximate relations between elements over orthogonalized 

orbitals, we denote them without a bar: U.b = ( 2 .  I U l 2b)- The two-orbital expansion 
comparable to (B) is an expansion using again 2. and 2b in (2.2). The non-diagonal 
element X.b can be approximately represented as 

t.b 1 
X.b -- (X.. - Xbb) + - -  Gb " (B') 

taa - -  tbb  taa - -  tbb  

In the following section, we make use of the relations (A), (B) and (B') and their 
possible modifications. It has to be remembered, however, that we have excluded 
cases where t , , -  tbb = 0. Also we cannot expect meaningful results if all the 
expansion terms in t and x vanish or cancel each other. 

3. Overlap and Slope of Overlap 

An operator equation which is both basic to quantum mechanics and easy 
to analyze is the Heisenberg uncertainty principle 

I-r, N = - 1 (3.1) 

where r is the position vector and p the linear momentum in the direction of r. 
From the preceding section, we identify t = r, u = -  1 hermitian, x = p  anti- 
hermitian. In this case (A) yields 1 

dS  2 
d R  - R S (3.2) 

where S = (Z ,  [Zb) and R is the internuclear distance. To keep the form of the 
formulas invariant with respect to a change of orbital exponents ~, we define 

= ~R and rewrite (3.2) as 
dS  2 

- S.  (A) 
do 0 

1 The vector character of r and p does not cause any difficulty and can be eliminated. 
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Fig. 1. Exact ( -  dS/do) and approximate (A, B, C) curves for slope of overlap over 2s-orbitals in 
dependence of Q = ~R in a diatomic molecule; ~ shielding exponent, R internuclear distance (in atomic 
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Fig. 2. Same curves as in Fig. 1 for 2pa-orbitals; local axes on the two atoms are parallel 

The analogous formula for (B) is 

dS _ ( 1 - S  2) S. (B) 
dQ Q 

In the following we investigate these approximations for 2s-, 2pa-, and 2p~- 
orbitals in diatomics. The discussion is not restricted to equal exponents if we 
define e = �89 + ~b)R. Our forms (A) and (B) lend themselves to such a generaliza- 
tion. To check the validity, we compare (A) and (B) with the correct form of 
dS/dQ obtained by Roothaan [11]. Here, we discuss only overlap integrals of 
the type (2s~ 12sb), (2paal2P~b), (2p~Za 12prCb). Qualitatively, we can make state- 
ments about the behavior at small and large Q. For ~ = 0 (A) diverges, whereas (B) 
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Fig. 3. Same curves as in Fig. 1 for 2p~-orbitals 
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approaches d S / d o  -- 0 as the exact formulas prescribe. For large 0 both representa- 
tions (A) and (B) of the slope of overlap vanish by an order of 0 too fast: For 
0 ~ oo (A) d S / d o  ~ - 2 S / o ,  (B) d S / d o  ~ - S/O whereas ( d S / d o )  . . . .  t ~  - S. To obtain 
the proper limit, we modify formula (B) in the following way 

d S  _ ( 1 - S  2)(1+0) S. (C) 
do O 

Any further discussion has to rely on quantitative evaluation of approximations 
(A), (B), and (C) and comparison to the exact curves over the whole range of 0. 
Figs. 1-3 contain this information. The results are particularly simple for 2s- 
and 2prc-orbitals. Approximation (B) provides a lower bound for - d S / d o  and 
approximation (C) provides an upper bound, with (B) being by far the better 
approximation to the exact curve. To be correct we have to point out that (B) is not 
an exact lower bound. For 0 < 0.5 it intersects the exact curve, but stays so close 
that the two curves are indistinguishable. Approximation (A) is poor for small 0. 
Surprisingly, however, it approaches the exact curve more closely for 0 > 4 and 
remains a better approximation than either (B) or (C) in the range of interest in 
molecular binding. Unfortunately, such promising results are not obtained for 
2po--orbitals. In particular the proportionality to S in (A), (B), and (C) forces the 
approximative curves through a common node at 0 = 2.5, whereas the exact 
curve has a node at 0 = 4.5. In the range 2.5 __< 0 --< 4.5, values of the approximate 
curves even have the wrong sign. For 0 < 2 and 0 > 5, either (B) and (C) or (B) and 
(A) become acceptable approximations. 

The commutator 
and/~ parameters is 

4. g and ~ Parameters 

equation which is most advantageous in determining 

I-r, hi -- p (4.1) 
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where r is the position vector, p the linear momentum in the direction of r and h 
the effective Hamiltonian of a single electron. 

Here the identification t -- r, x = h, and u = p leads to direct application of the 
formulas in Sect. 2. 

For  non-orthogonal orbitals Za and Zb on the two atoms of a diatomic molecule 
approximation (A) is 

2 dS 
fl.b - (A) 

E dE 
whereas (B) yields 

1 A E (1 - Sa2b) dS.b 
fl~ = 2 -  + + - -  + - -  E E do 

where E = �89 + (b) R and A E accounts for the shift of the center of density Z~Zb 
from the midpoint between the two nuclei [5]. ~ and fl are calculated in units of 
�88 + (b) 2. Since we will discuss only the case where (a = (b and Z. and Zb are the 
equivalent orbitals 2s a and 2Sb, 2pa~ and 2po- b or 2pTr~ and 2prr b, we shall recast (B) 
in the form 

(1 - S~2b) dSab 
flob = sob o ( B )  

o do 

This form lends itself to a comparison with Pople's form of fl~b = Sabfi ~ if we set 

fl~ = ~a + a ~ (4.2) 
with 

(1 - S2b) dS~b 

SabE dE 

It should be mentioned at this point that Linderberg and O h m  [4] have 
proposed a formula similar to (B). But they emphasized the nearest-ndghbor 
character of their approximation and dropped higher terms in S which are 
necessary for the proper limits. Their basis of expansion was essentially (2.3) with 
F 2 = S  -1. 

To avoid confining our results for large E to a single limit ff~SN, we also use 
modification (C) similar to the one in Sect. 3. 

- (1 - s o(1 + E) 
flab = Sabra .Of- (C) 

E dQ 

We have calculated fl values (in units (2) in approximations (A), (B), and (C) with 
exact and approximate ~ values (in units (2). To obtain an idea of how good these 
approximations are, we compared them with the exact fl values calculated with 
Roothaan's formulas ]-11]. We used an effective Hamiltonian of the form 

1 Z Z 
= - (4.3) he T F~ E~ Ob 

where E .=( r~ ,Eb= (rb, Z =  Z.ff/(. This yields a convenient invariance of the 
results to changes in exponents (. The energy quantities 5 and fl are given in 
units of (2. The effective charge Z is in units of (. 
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values over 2s-, 2pa-, and 2p~-orbitals for various choices of Z are given in 
Figs. 4-6. Here we have calculated ~ values for all cases exactly, i.e., the approxi- 
mate ~ parameters in these figures are all based on exact ~ parameters. These 

parameters are given in Figs. 7-9. 
The resemblance of the behavior of ~ parameters in approximations (A), (B), 

and (C) to the corresponding results for dS/dQ discussed in Sect. 2 is striking. 
Again (B) and (C) provide lower and upper bounds for -~ex,ct over 2s- and 2prc- 
orbitals for large ranges of Q. Although there is a dependence of this boundary 
range on Z, the essence of the above conclusion holds for Z = 0 (pure kinetic 
energy) to Z = 3 which covers effective charges up to Zeff = 4.8 in carbon with the 
usual Slater exponents. Approximation (B) is indeed very good for the whole 
range of interest of parameters ~ and Z. Approximation (A) refers to a specific 
choice of Z which is of the order of 0.5 to 0.8. Hence it refers in molecular cal- 
culations to a strongly shielded Hamiltonian. We have attributed (A) previously 
I-5] to extended Hiickel methods 1-12] which is herewith justified. For 2po--orbitals 
neither (B) nor (C) have the simple behavior which could classify them as lower 
and upper bounds. Simplifying, we could say both provide mostly upper bounds 
for -ffex~ot (B) is again an acceptable approximation. Approximation (A), for 
this case, fails to provide a basis for a meaningful interpretation. For 3 < ~ < 5 
which includes the benzene distance (~ = 4.30), it refers to a strongly shielded 
situation. 

Form (B) lends itself to an extension to polyatomics. Let us suppose we have 

a third atom which generates a potential --.Z If we approximate matrix elements 
rc 

of potential terms involving atomic orbitals Za and )~b on two atoms and potential 
Z 

energy operator - -  of a third (or further) atom by the Mulliken approximation rc 
( za ~ Zbl = 1S"b(( za ~ Z~l+lZb ~c )~bl] (4.4) 

we can keep form (B) or its more general expression with several different 
values for polyatomics. This would mean that any ff values, even those involving 
three-center integrals, can be calculated approximately by two-center integrals 
only. Further investigation of this point could be gratifying. 

We conclude this section with two remarks on N parameters. In Figs. 7-9, 
~n is the value of the carbon ionization potential in units of ~ (~c = 1.625). We can 
say that for distances of the order of the nearest-neighbor distance in benzene 
(Q = 4.30)~ n refers to a charge Z --0.5 to 0.8. This is in agreement with our above 
conclusions about ff parameters in extended Htickel methods. We may say that 
consistency in the choice of parameters K and ~ in the extended Htickel method 
[ 12] is a matter of meaningful empirical adjustment for a small range of distances. 
The conclusions about gn are also in agreement with the assumptions made for a 
preliminary investigation of coupling effects between 2s- and 2pa-orbitals [6]. 
Pople has introduced in the CNDO method a parameter fi~ which we have 
interpreted in Eq. (4.2). We find some justification for Pople's claim that fl~ can 
be taken as constant. In particular, for intermediate distances the decrease in ~ is 



190 K. Jug: 

1.5 

1.0 

0.5 

0 

-0.2 

Z=3 

Z=2 

1 2 3 4 5 6 
P 

15 

1.0 

3.5 

o 

t 
Z=O 

I I 

4 ] 6 
P 

Fig. 4 Fig. 5 

Fig. 4. Exact ( - ~ )  and approximate (A, B, C) curves for non-diagonal effective core elements over 
2s-orbitals in dependence of Q = ~R and Z = Zofr/{ in a homonuclear diatomic molecule (in atomic 
units/~Z); ff orbital shielding exponent, Z~ff effective core charge, R internuclear distance (in atomic 
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Fig. 5. Same curves as in Fig. 4 for 2pa-orbitals; axes as in Fig. 2 
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Fig. 6. Same curves as in Fig. 4 for 2pn-orbitals 



Operator  Equations in M O  Theories 191 

15 

1.0 

-3, 

05 

-0; 
Z=0 

P 

Fig. 7 

15 ' \ ' ' ~ ~ Z=3 

1.0. 

- o  t. 

05 
Z=I 

- o , :  H 

0 

- 0 5 0  1 2 3 4 5 6 
P 

Fig. 8 

Fig. 7. Exact ( -  ~) curves for diagonal effective core elements over 2s-orbitals in dependence of Q = ~R 
and Z = Z~fe/~ in a homonuclear  diatomic molecule (in atomic units/~2); also semiempirical ( - ~ n )  
and shift ( - A ~ )  curves; ~ orbital shielding exponent, Zoff effective core, R internuclear distance (in 
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Fig. 8. Same curves as in Fig. 7 for 2pa-orbitals; axes as in Fig. 2 
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balanced somewhat by the increase of A E, so that the sum is fairly constant, 
although care has to be taken for 2pa-orbitals. For  Q < 3.5 (4.2) fails to be satis- 
factory in this case. 

However, if we compare the actual values of fl~ e.g., for ethylene - 21 eV, with 
our exact calculations of ~ and AE, we can attribute Pople's values of fl~ only to 
strongly shielded cases where Z~ff = 1 or even smaller. In no way can we interpret 
Pople's choice of fl~ parameter values on the basis of his own statement that Z~ff 
is the core charge with all valence electrons removed, e.g., Zef~ = 4 for carbon. 
In fact, to our knowledge, the close resemblance of fl values for n-electrons in 
the extended Htickel method and CNDO method has not been emphasized. 
We understand the CNDO method in such a way that the formal neglect of a part 
of electronic interaction is balanced by a decrease of the effective charge in the 
core Hamiltonian. Finally, one might object that it would be better to consider 
the CNDO method as based on orthogonal orbitats. Our investigation offi param- 
eters over symmetrically orthogonalized orbitals in the next section cannot 
substantiate this reasoning. 

5. fl Parameters 

From Eq. (4.1) we can also obtain formulas for fl parameters over sym- 
metrically orthogonalized atomic orbitals. In this case (B') of Sect. 2 take the form 

1 A O 1 dSab 
f l a b  - -  (1  2 _1 ( ~ . - -  ~b)  + - -  - 

- Sab) ~ 0 O d o  

For  ~a -- ~b this can be simplified to 

1 dSab 
fl~b - (B') 

Q do 

This is the formula used first by Linderberg [2] in a slightly different form. We have 
calculated values with (B') and compared them with the exact fi's from Roothaan's 
formulas [11]. The Hamiltonian used was the same as in (4.3). 

The results for 2s-, 2pa-, and 2pn-orbitals are in Figs. 10-12. Whereas form 
(B') suggests gauge invariance, i.e., invariance with respect to a change of Z, the 
exact curves for fl are not gauge invariant. The exact curves for 2s-orbitals all 
intersect at Q = 4.75. For  0 < 4.75 the kinetic energy curve (Z = 0) is the lowest. 
The approximate curve (B') for this range would refer to a repulsive potential. 
At larger distances the inversion of the curves allows for physical interpretation. 
But there is no single Z to which (B') could be referred for any interval of the 
Q axis. Our conclusion can only be that (B') is not a meaningful approximation 
for fl over 2s-orbitals. The same conclusion holds for 2pa-orbitals. There is no 
inversion point for exact fl curves over 2pzc-orbitals. But only for Q > 4 values of (B') 
can be identified with values of exact fi's for physically significant Z's. If we want 
to interpret semiempirical values for benzene, the value fl = - 2.39 eV [13] refers 
to an effective charge of about Zofr = 5. This is a rather large effective charge if 
one considers that Zef f = 1 is usually considered as underlying semiempirical 
methods. Fischer-Hjalmars [-14] has calculated f l = - 3 . 8  eV for Zeff=3.25 
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Fig. 10. Exact ( - /3)  and approximate (B') curves of non-diagonal  effective core elements over sym- 
metrically orthogonalized 2s-orbitals in dependence of 0 = ~R and Z = Zeff/~ in a homonuclear  
diatomic molecule (in atomic units/~2); orbital shielding exponent, Zef f effective core charge, R inter- 

nuclear distance (in atomic units) 

Fig. 11. Same curves as in Fig. 10 for 2pa-orbitals; axes as in Fig. 2 
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which is in agreement  with our  findings. The  exact fl's increase in absolute  value 
with decreasing Z. 

If  we try to interpret  the consequences of  Pople 's  value of C N D O  fl~ for carbon 
on the basis of  or thogonal ized  orbitals,  it would require for 2s-orbitals Zeff >> 5, 
for 2pn-orbi ta ls  Zef f ~ 1.6, and for 2pa-orbi ta ls  Zef f ~ 2.0 to obta in  ffs. N o t  only 
is this set of  Zeff'S inconsistent,  but  it is difficult to a t tach physical  significance to 
a value Zef f >~ 5. 

6. Conclusion 

We have invest igated the possibil i ty of  using opera to r  equat ions  of the type 
[t, x]  = u in molecular  calculations. In part icular ,  we were interested in reducing 
matr ix  elements of  opera tors  x to elements  of  x, t, and u which are easier to 
calculate. O u r  general  app rox ima t ions  (A), (B), (C), and (B') were based on 
t runcated  expansions  of  integrals over  the c o m m u t a t o r  relation. The  general 
formulas  were appl ied to two c o m m u t a t o r  relat ions of  par t icular  interest 
Jr, p]  = -  1 and [r, h] = p .  Slopes of  over lap  dS/do and pa ramete r s  of  core 
Hami l ton ians  fl and/3 were calculated exactly and approximate ly .  O u r  investiga- 
t ions suppor t  the adop t ion  of a single app rox ima t ion  (B) for pa ramete r s  over  
non-o r thogona l  orbitals.  In  par t icular  fl pa ramete r s  can be reduced to ~ pa r am-  
elers and slopes of  over lap  dS/do. The form (B) lends itself to general izat ion to 
polyatomics .  F o r  2pa-orb i ta l s  the approx ima t ions  would be improved  by taking 
also expansion terms of 2s-orbitals  as suggested previously [6]. Finally, we 
find/3 pa ramete r s  in the original form by Linderberg  less sat isfactory than  the 
first studies seemed to suggest. 
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the manuscript. 
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